Power law of decaying homogeneous isotropic turbulence at low Reynolds number.

نویسندگان

  • P Burattini
  • P Lavoie
  • A Agrawal
  • L Djenidi
  • R A Antonia
چکیده

We focus on an estimate of the decay exponent (m) in the initial period of decay of homogeneous isotropic turbulence at low Taylor microscale Reynolds number R lambda (approximately equal to 20-50). Lattice Boltzmann simulations in a periodic box of 256(3) points are performed and compared with measurements in grid turbulence at similar R lambda. Good agreement is found between measured and calculated energy spectra. The exponent m is estimated in three different ways: from the decay of the turbulent kinetic energy, the decay of the mean energy dissipation rate, and the rate of growth of the Taylor microscale. Although all estimates are close, as prescribed by theory, that from the Taylor microscale has the largest variability. It is then suggested that the virtual origin for the decay rate be determined from the Taylor microscale, but the actual value of m be estimated from the decay rate of the kinetic energy. The dependence of m on R lambda(0) (the value of R lambda at the beginning of the simulation) is also analyzed, using the present data as well as data from the literature. The results confirmed that m approaches 1, as R lambda(0) increases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Low Reynolds Number Isotropic Turbulence Including the Passive Scalar

Full simulations of homogeneous isotropic turbulence containing a homogeneous passive scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral behavior of the two fields are quite similar; both fields decay as power-law functions of time. However. the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of...

متن کامل

Scalings of Inverse Energy Transfer and Energy Decay in 3-D Decaying Isotropic Turbulence with Non-rotating or Rotating Frame of Reference

Energy development of decaying isotropic turbulence in a 3-D periodic cube with non-rotating or rotating frames of reference is studied through direct numerical simulation using GPU accelerated lattice Boltzmann method. The initial turbulence is isotropic, generated in spectral space with prescribed energy spectrum E(κ)~κm in a range between κmin and ...

متن کامل

Gas Kinetic Scheme for DNS of Decaying Compressible Turbulence

We apply the gas-kinetic scheme (GKS) for direct numerical simulation (DNS) of compressible decaying homogeneous isotropic turbulence. We compute dynamics of the kinetic energy K(t), the dissipation rate ε(t), the probability density functions (PDFs) of the twopoint longitudinal velocity difference δu(δr) with a separation distance δr, the shocklet strength χ, and the local Mach number Mat. Our...

متن کامل

Velocity autocorrelations of decaying isotropic homogeneous turbulence

Velocity autocorrelations and the mean-square displacements of fluid particles are obtained for decaying, isotropic homogeneous turbulence by numerical simulation of the flow field, using 1283 and 256’ grids, and tracking several tens of thousands of fluid particles, using a third-order interpolation scheme. A self-preserving Lagrangian velocity autocorrelation coefficient is found in terms of ...

متن کامل

Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence.

Decaying homogeneous isotropic turbulence in inertial and rotating reference frames is investigated to evaluate the capability of the lattice Boltzmann method in turbulence. In the inertial frame case, the decay exponents of kinetic energy and dissipation and the low wave-number scaling of the spectrum are studied. The results are in agreement with classical ones. In the frame-rotation case, si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006